Journal of Organometallic Chemistry, 146 (1978) 57–69 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

COMPLEXES OLEFINIQUES DU RUTHENIUM

IV *. ETUDE DES COMPLEXES [RuClH(diène)(amine)₂], STRUCTURE CRISTALLINE DE [RuClH(cod)(pipéridine)₂]

C. POTVIN, J.M. MANOLI, G. PANNETIER

Laboratoire de Cinétique Chimique, Université Pierre et Marie Curie, 1 rue Guy de la Brosse, 75005 Paris (France)

et R. CHEVALIER

Laboratoire de Minéralogie Cristallographie, Université Pierre et Marie Curie, 4 Place Jussieu, 75230 Paris Cédex 05 (France)

(Reçu le 20 juillet 1977)

Summary

The polymer $[\operatorname{RuCl}_2(\operatorname{diene})]_n$ undergoes bridge cleavage reaction with amines giving, at temperatures dependant on the nature of the diene moiety, the monomer $[\operatorname{RuClH}(\operatorname{diene})(\operatorname{amine})_2]$. The crystal structure of the compound $[\operatorname{RuClH}(\operatorname{cod})(\operatorname{pip})_2]$ has been determined from three dimensional X-ray data.

The complex crystallizes in space group Pmcn of the orthorhombic system, a 16.808(4), b 11.520(2), c 9.744(2) Å; D_m 1.44, D_c 1.46 g cm⁻³; Z 4. The structure was solved by standard heavy atom methods and has been refined by least squares to a conventional R factor of 0.039 based on 3280 refections. The complex has a crystallographically C_s imposed symmetry. The coordination geometry around the ruthenium atom is octahedrally distorted with *cis* amine ligands, the chloro and the hydrido ligands being *trans* to each other and the cyclooctadiene moiety bound through the two double bonds. The C=C distances of the olefinic bonds are longer (1.394(4) Å) than was to be expected according to the Dewar—Chatt—Duncanson model. Principal bond lengths are: Ru—H 1.57(4); Ru—Cl 2.555(1) (demonstrating a high structural *trans* influence of the hydrido ligand); Ru—N, 2.240(2) Å. An order of increasing structural *trans* influence for Ru—Cl distances is proposed. In the IR spectrum ν (Ru—H) was observed at 2040 cm⁻¹. Decomposition of the complexes in chlorinated solvents prevented NMR studies.

* Pour la partie III voir réf. 2.

Résumé

La réaction de coupure des ponts chlore par les amines dans les composés polymères $[RuCl_2(diène)]_n$ conduit, lorsque la température dépasse 30°C (diène = cod) ou 65°C (diène = nbd), à des complexes de formule $[RuClH(diène)(amine)_2]$.

La structure cristalline d'un de ces composés $[RuClH(cod)(pip)_2]$ a été déterminée. Il cristallise dans le système orthorhombique, groupe d'espace *Pmcn*; a 16.808(4), b 11.520(2), c 9.744(2) Å; D_m 1.44, D_c 1.46 g cm⁻³; Z 4. La structure a été résolue par la méthode de l'atome lourd et affinée par moindres carrés (sur 3280 réflexions) jusqu'à une valeur finale de l'indice R de 0.039. La géométrie autour de l'atome de ruthénium est celle d'un pseudo-octaèdre avec l'atome de chlore et le ligand hydruro en *trans* l'un de l'autre et les deux coordinats amine en *cis* l'un de l'autre.

Le cyclooctadiène (de symétrie C_s) est lié au ruthénium par l'intermédiaire de ses doubles liaisons C=C pour lesquelles on constate un allongement (C=C 1.394(4) Å). Principales distances: Ru-H 1.57(4), Ru-Cl 2.555(1) (grande influence structurale *trans* du ligand hydruro), Ru-N 2.240(2) Å. Une classification de l'influence structurale *trans* de divers ligands sur la base des valeurs des distances Ru-Cl est proposée. Les spectres IR montrent la vibration ν (Ru-H) à 2040 cm⁻¹. La décomposition de ces complexes dans les solvants chlorés empêche toute étude RMN.

Introduction

Dans les réactions de coupure des ponts chlore des polymères de formule $[RuCl_2(diène)]_n$ par les amines [1,2], on assiste suivant la température et la nature de l'amine à la formation de deux séries de complexes; les premiers de formule $[RuCl_2(diène)(amine)_2]$ sont obtenus à la température ambiante, les autres de formule $[RuClH(diène)(amine)_2]$ sont isolés quand on élève la température.

Des complexes hydruro du ruthénium contenant une dioléfine ont déjà été signalés. Wilkinson et al. [3] ont préparé le composé [RuClH(nbd)(PPh₃)₂] * lors d'une étude de la réactivité chimique de [RuClH(PPh₃)₂]. Le spectre RMN de ce produit conduit les auteurs à envisager l'existence d'un mélange de deux formes isomères dans lesquelles l'atome d'hydrogène est toujours en position *trans* par rapport à l'une des deux doubles liaisons de l'oléfine. Singleton et al. [4] après avoir dans un premier temps synthétisé une série de cations [RuH-(cod)L₃]^{*} (avec L = N₂H₄, N(CH₃)₂NH₂, pyridine, γ -picoline) ainsi qu'un composé neutre [RuBrH(cod)L₂] (avec L = phosphine ou phosphite) ont récemment isolé [5] d'autres complexes cationiques de même formule [RuH(diène)L₃]⁺ avec diverses dioléfines, les ligands étant cette fois des phosphines ou des phosphites. La résolution de la structure d'un de ces composés: [RuHC₄H₆(PMe₂Ph)₃]-PF₆ leur a permis de préciser l'arrangement des ligands autour du ruthénium

Les abréviations utilisées dans le texte sont les suivantes: cod = cyclooctadiène-1,5; nbd = norbornadiène ou bicyclo[2.2.1.]heptadiène-1,5; pip = pipéridine (C5H11N); py = pyridine (C5H5N); Ph = C6H5; anil = C6H5NH2; Me = CH3; Et = C2H5; dmso = (CH3)2SO.

(l'isomère étudié comporte les phosphines en position *faciale*) et de confirmer les données de la spectrométrie RMN effectuée sur les rares complexes similaires non détruits en solution.

Compte tenu des résultats que nous avons obtenus par ailleurs [1,2] concernant les composés $[RuCl_2(diène)(amine)_2]$, il nous a paru intéressant de compléter ce travail en étudiant les caractéristiques physicochimiques et l'évolution chimique des complexes $[RuClH(diène)(amine)_2]$. Les études par spectrométrie infrarouge et par résonance magnétique nucléaire, cette dernière étant limitée par suite de la décomposition des produits dans les solvants chlorés, ne nous permettent pas de déterminer sans ambiguité la disposition des ligands autour de l'atome de ruthénium; aussi avons nous entrepris également une étude structurale par diffraction X du complexe $[RuClH(cod)(C_5H_{11}N)_2]$.

Partie expérimentale

Préparation des complexes

Tous les solvants et les amines sont distillés en atmosphère d'azote. Le composé polymère insoluble $[\operatorname{RuCl}_2(\operatorname{diène})]_n$ a été préparé comme précédemment décrit [6]. La réaction de coupure des ponts chlore de ce polymère a été essayée avec une vingtaine d'amines [2]. Parmi celles-ci, seule la cyclohexylamine, la diméthylamine et la pipéridine employées en excès conduisent lorsque la température dépasse 30°C à la précipitation de complexe $[\operatorname{RuClH}(\operatorname{diène})(\operatorname{amine})_2]$ finement cristallisés [1].

On peut également synthétiser ces composés à partir d'une solution de $[RuCl_2-(diène)(amine)_2](1-3 \times 10^{-4} mol de complexe) dans une mélange à volume$ égal d'acétone et d'éthanol (4 ml au total) en présence de l'amine (1 ml environ)entrant dans la constitution du complexe dichloro et en se plaçant à une température proche de celle du début de la réaction (30°C environ). Ceci permet d'êtreinitialement en milieu homogène et d'obtenir par une lente cristallisation desagrégats de cristaux (réaction terminée au bout de 20 h environ). Il n'a jamaisété possible de recristalliser les composés formés.

Une réaction d'échange de coordinat aminé (cyclohexylamine, diméthylamine ou pipéridine remplacés par la pyridine) nous a permis de préparer des agglomérats de cristaux de [RuClH(cod)(py)₂] à la température ambiante à partir de solution dans la pyridine d'autres composés hydruro préalablement synthétisés. Les diverses tentatives de réaction d'échange avec d'autres amines ont échoué.

L'obtention de composés similaires à partir de $[\operatorname{RuCl}_2(\operatorname{nbd})]_n$ n'est possible qu'avec la pipéridine, elle nécessite de plus une température supérieure à 65°C; et dans ce cas, aucun composé hydruro n'a été isolé à l'état solide par réaction de la pyridine.

Etude spectrométrique

Les spectres infrarouges ont été obtenus à l'aide d'un spectromètre Perkin-Elmer 457, le produit étant dispersé dans du bromure de potassium et pastillé sous pression. L'enregistrement des spectres de RMN protonique a été effectué dans le $CDCl_3$ avec un appareil Hitachi R 24.

Etude cristallographique

L'obtention de monocristaux de taille compatible avec une étude cristallographique est difficile et peu reproductible. Il nous a été impossible jusqu'ici de préparer des monocristaux du complexe hydruro contenant le norbornadiène. Notre choix c'est alors porté sur le cyclooctadiène comme oléfine et sur la pipéridine comme amine dans le but de faciliter les comparaisons avec la structure déjà résolue de [RuCl₂(nbd)(pip)₂] [2]. Deux expériences seulement sur une cinquantaine d'essais nous ont permis d'isoler quinze monocristaux de [RuClH-(cod)(pip)₂]. Ils ont été obtenus par refroidissement lent (30–20°C) d'une solution saturée de [RuCl₂(cod)(pip)₂] dans l'acétone contenant de la pipéridine.

Les cristaux de [RuClH(cod)(pip), appartiennent au système orthorhombique. Les extinctions systématiques observées conduisent à envisager les groupes d'espaces Pmcn et P2, cn. Les paramètres de la maille sont a 16.808(4), b 11.520(2) et c 9.744(2) Å. La masse volumique mesurée par flottaison dans une solution aqueuse de bromure de zinc ($D_{\rm m}$ 1.44 g cm⁻³) est en accord avec l'existence de quatre groupements formulaires par maille (D_c 1.46 g cm⁻³). Aucun effet piézoélectrique n'a été décelé avec les cristaux. Un fragment sensiblement cubique (0.15 mm d'arête) a été utilisé pour l'enregistrement de 4309 réflexions à l'aide d'un diffractomètre Philips PW 1100 (rayonnement Mo- K_{α} ; jusqu'à une limite de 68° en 2 heta). Les conditions de mesure sont comparables à celles décrites pour $[RuCl_2(cod)(C_6H_{15}N)_2][2]$. La coefficient linéaire d'absorption étant pour le rayonnement Mo- K_{α} de l'ordre de 9 cm⁻¹ les corrections d'absorption ont été négligées. La structure a été finalement résolue dans le groupe centré *Pmcn*. Il est à noter que nous avons observé au cours de l'enregistrement au diffractomètre automatique quelques réflexions d'indice 500, 030, 410, 120 et 140 suffisament intenses $(F_{o}^{2} > 4\sigma(F_{o}^{2}))$ et qui semblent ne pas satisfaire aux conditions d'extinction du groupe d'espace déjà déterminées sur film. Toutefois leur profil très fin et leur disparition par rotation du cristal autour du vecteur de diffusion ou par changement de radiation (Cu- K_{α} à la place de Mo- K_{α}) nous permettent de conclure qu'elles sont dues à un phénomène de double réflexion. De plus les réflexions d'indice 200, 110, 011 et 111 dont la mesure a été faussée par une mauvaise position du puits ont été éliminées ainsi que celles pour lesquelles $F_0^2 < 1.5\sigma(F_0^2)$. Un total de 3280 réflexions indépendantes corrigées des facteurs de Lorentz et de polarisation ont finalement été conservées.

La structure a été résolue suivant le protocole précédemment développé [2], l'utilisation des fonctions de Patterson et des sections de "Fourier-différence" a permis de localiser les atomes de Ru, Cl, N et C. Les dix sept atomes d'hydrogène liés aux atomes de carbone et d'azote ont été repérés sur les sections de "Fourier-différence" en accord avec leurs positions théoriques calculées. Ils ont été introduits dans l'affinement avec des paramètres de position et un facteur d'agitation thermique isotrope variable.

Il est bien connu que les atomes d'hydrogène se trouvant peu éloignés d'un atome lourd ne sont pas faciles à repérer sur des sections de "Fourier-différence". En ce qui concerne le ligand hydruro, la vibration Ru—H en spectrométrie IR témoigne de l'existence de ce ligand dans la sphère de coordination du ruthénium; il a été localisé sans trop de difficultés à 1.65 Å de l'atome de ruthénium. Les coordonnées fractionnaires de tous les atomes et les facteurs de température

POSITIONS ET PARAMETRES THERMIQUES DES ATOMES DE Ru, CI, C ET N DANS [RuCIH(C8H12)(C5H11N)2]

Les valeurs des écart-types sur le dernier chiffre sont indiquées entre parenthéses. La numérotation des atonnes correspond à celle des Fig. 1 ou 2. ŝ . ŝ ç • ç ę ç

Les coefficiei	nts plj des lacteur	s d'agitation thern	nique anisotrope se	ont ceux de l'ex	pression: exp[—()	311/14 + 1322/14 + 11	3314 + 21312418 +	$2\beta_{1,3}n_{1} + 2\beta_{2,3}n_{1})$	
Atome	×	y	N	$10^4 \beta_{11}$	10 ⁴ β22	$10^4 \beta_{33}$	$10^4 \beta_{12}$	$10^4 \beta_{13}$	$10^{4} \beta_{23}$
Ru	1/4	0.02548(3)	0.01834(3)	24.1(1)	41.5(2)	58.2(2)	0	0	-1,2(1)
ច	1/4	0.2337(1)	-0.0722(1)	26.7(2)	57,3(5)	94(1)	0	0	20.0(5)
Z	0.3414(1)	0.0934(1)	0.1653(2)	23(1)	50(1)	67(2)	4(1)	2(1)	3(1)
C(1)	0.4143(2)	0.1456(2)	0.1042(2)	27(1)	79(2)	86(2)	-3(1)	-4(1)	12(2)
C(2)	0.4653(2)	0.2074(3)	0.2103(3)	29(1)	96(2)	121(3)	-0(1)	-11(1)	2(2)
C(3)	0.4906(2)	0.1259(3)	0.3230(3)	27(1)	122(3)	97(3)	7(1)	-10(1)	-7(2)
C(4)	0.4182(2)	0.0662(3)	0.3847(3)	31(1)	102(3)	77(2)	12(1)	-10(1)	7(2)
C(5)	0.3652(2)	0.0121(2)	0.2767(3)	36(1)	65(2)	81(2)	6(1)	-7(1)	19(2)
C(6)	0.2941(2)	-0.0037(4)	-0.2862(3)	43(1)	171(4)	74(3)	15(2)	7(1)	-11(3)
C(7)	0.3327(2)	-0.0046(2)	-0.1467(3)	31(1)	81(2)	77(2)	6(1)	7(1)	-14(2)
C(8)	0,3328(2)	-0.1003(2)	-0.0592(3)	(1)[69(2)	105(3)	16(1)	(1)9	-20(2)
C(9)	0.2936(3)	-0.2149(3)	-0.0973(5)	76(2)	61 (2)	224(6)	11(2)	16(3)	-45(3)
and the second s	and the second s	A service of the same size is an approximate the service of the se	the second of the second secon		A CALL IN THE REAL PROPERTY OF A CALL IN THE REAL PROPERTY.	The same second of a second se	A REAL PROPERTY OF A REAL PROPER		

61

1

(| |

1 1]

5

POSITIONS ET PARAMETRES THERMIQUES DES ATOMES D'HYDROGENE DANS [RuClH(C₈H₁₂)-(C₅H₁₁N)₂]

Pour la numérotation des atomes d'hydrogène nous avons fait figurer entre parenthèses l'atome de carbone auquel est lié l'atome d'hydrogène: H(C(1)) et $H^*(C(1))$ sont liés au même atome de carbone C(1)

Atome	x	y	z	B (Å ²)	
H(Ru)	1/4	-0.0808(30)	0.1193(35)	1.0(0.5)	
H(N)	0.3166(17)	0.1526(23)	0.2066(28)	1.9(0.5)	
H(C(1))	0.3952(16)	0.1963(24)	0.0325(27)	1.4(0.4)	
H*(C(1))	0.4445(16)	0.0837(26)	0.0614(30)	1.9(0.8)	
H(C(2))	0.5122(18)	0.2386(27)	0.1643(32)	2.7(0.6)	
$H^{+}(C(2))$	0.4367(19)	0.2701(26)	0.2435(30)	3.1(0.7)	
H(C(3))	0.5210(19)	0.1663(26)	0.3952(32)	3.0(0.7)	
H*(C(3))	0.5256(21)	0.0648(31)	0.2805(36)	3.4(0.8)	
H(C(4))	0.3853(18)	0.1187(26)	0.4296(33)	2.5(0.5)	
H*(C(4))	0.4329(24)	0.0072(30)	0.4467(42)	3.8(0.8)	
H(C(5))	0.3198(20)	-0.0149(27)	0.3188(38)	3.1(0.7)	
H*(C(5))	0.392(17)	-0.0495(24)	0.2351(31)	2.2(0.6)	
H(C(6))	0.3194(30)	-0.0556(43)	-0.3379(50)	7.5(1.6)	
H*(C(6))	0.3115(27)	0.0667(48)	-0.3294(51)	8.7(2.3)	
H(C(7))	0.3745(17)	0.0472(23)	0.1331(29)	1.6(0.4)	
H(C(8))	0.3739(20)	-0.1018(29)	0.0050(28)	2.4(0.5)	
H(C(9))	0.3182(37)	-0.2736(58)	-0.0361(52)	9.8(1.8)	
H*(C(9))	0.3191(30)	-0.2421(41)	-0.1683(45)	7.1(1.7)	

anisotropes pour les atomes de Ru, Cl, N et C et isotropes pour les atomes d'hydrogène ont été soumis à deux cycles supplémentaires d'affinement qui ont fait converger les coefficients R et R_p vers les valeurs finales de 0.039 et de 0.043 pour 3280 réflexions indépendantes. Les coordonnées atomiques et les facteurs de température des atomes sont rassemblés dans les Tableaux 1 et 2 *.

Résultats et discussion

Etude cristallographique

Les principales distances interatomiques et une sélection d'angles caractéristiques sont données dans le Tableau 3. La Fig. 1 représente une vue stéréoscopique de la structure limitée a une seule molécule (unité asymétrique).

La structure du complexe hydruro du ruthénium consiste en un arrangement discret de groupements formulaires $[RuClH(cod)(pip)_2]$. Leur agencement dans la maille révèle l'existence d'une courte distance $Cl\cdots H(N)$ de 2.76 Å (bien inférieure à la somme des rayons de Van der Waals pour Cl et H) [7], elle peut correspondre à une liaison hydrogène, l'angle N—H(N)…Cl étant de 154° [8] (voir discussion des spectres infrarouges). Une autre distance intermoléculaire, $Cl\cdots H(C(4))$ de 2.85 Å, courte peut également être prise en considération. Le reste de l'empilement moléculaire est dominé par des contacts de Van der Waals entre atomes d'hydrogène et de carbone (Tableau 3).

* La liste des facteurs de structure observés et calculés, ainsi que les valeurs des axes de ellipsoïdes de vibration thermique des atomes Ru, Cl, N et C peuvent être obtenues auprès des auteurs.

62

SELECTION DE DISTANCES ET D'ANGLES DANS [RuClH(C8H12)(C6H11N)2]

Pipéridine C(1) à C(5), cyclocotadiène C(6) à C(9). Les atomes marqués d'un prime sont équivalents (miroir). ct est le milieu de la double liaison C(7)-C(8)

-							
Distances (Å)							
Ru-Cl	2.555(1)	N-C(1)	1.488(3)	N—H(N)	0.89(3)	
Ru—N	2.240(2)	N-C(5)	1.488(3)	-		• • •	
Ru—H(Ru)	1.57(4)	C(1) - C(2)	1.519(4)	C(1)-	H(C(1))	0.96(3)	
Ru-C(7)	2.152(2)	C(2)-C(3)	1.506(4)	C(1)	H*(C(1))	0.97(3)	
Ru-C(8)	2.146(2)	C(3) - C(4)	1.519(4)	C(2)	H(C(2))	0.97(3)	
Ru-ct	2.033	C(4) - C(5)	1.512(4)	C(2)	$H^{*}(C(2))$	0.93(3)	
				C(3)-	H(C(3))	0.98(3)	
C(7)-C(8)	1.394(4)	C-C ^a	1.514(7)	C(3)-	H*(C(3))	1.00(4)	
C(6)-C(7)	1.506(4)		• •	C(4)-	H(C(4))	0.93(3)	
C(8)-C(9)	1.522(5)	C(6)—H(C(6))	0.89(5)	C(4)-	H*(C(4))	0.94(4)	
C(6)-C(6)'	1.480(7)	$C(6) - H^{*}(C(6))$	0.96(5)	C(5)-	H(C(5))	0.92(4)	
C(9)-C(9)	1.465(9)	C(7) - H(C(7))	0.93(3)	C(5)-	H*(C(5))	0.94(3)	
- (-) - (-)		C(8) - H(C(8))	0.93(3)	-(-)			
		C(9) - H(C(9))	0.99(6)	Сна	r -	0.95(3)	
		$C(9) - H^{*}(C(9))$	0.87(6)	• ••		0.00(0)	
			0.01(0)				
		С—Н а	0.93(4)				
Distances entre a	tomes non lié	s					
(a) intramolécula	lire						
H(Ru)C(8)	2.23	ClH(C(1))	2.68	Ru…H	(C(8))	2.55	
H(Ru)…H(C(8))	2.37	Cl…H(N)	3.08	Ru…H	(C(7))	2.56	
H(Ru)…H(C(5))	2.38	ClH(C(7))	3.05	Ru…H	(N)	2.59	
H(Ru)…N	2.56	ClC(7)	3.16	Ru…H	(C(1))	3.14	
H(Ru)…C(5)	2.69	Cl…N	3.21	Ru…H	(C(5))	3.17	
H(Ru)…C(9)	2.71	Clct	3.59	ct…cť		2.78	
H(Ru)…H(N)	3.03	ClH(Ru)	4.07	C(7)…	C(8)'	3.11	
H(N)…H(N')	2.22	H(C(1))…H)C(7))	2.38	C(6)…	C(9)	3.39	
C(7)…H*(C(1))	2.94	H*(C(1))H(C(7))	2.25	NN'		3.07	
C(7)H(C(1))	3.09	H*(C(5))H(C(8))	2.34	N…ct		3.11	
C(8)…H*(C(5))	3.09	H(C(5))····H(C(5)')	2.28				
(b) intermolécula	lire						
H(N)Cl	2.76	H(C(1))H(C(4))	2.38	H*(C(-	4))…H*(C(4)) 2.50	
H(C(7))…H*(C(3	3)) 2.57					-	
Angles (deg.)							
(a) intramolécula	ire						
Cl-Ru-H(Ru)	161.4(1.3) $C(6) - C(7) - C(8)$) 123.9	(3)	N-C(1)-H	can	105(2)
Cl-Ru-N	83.83(4)	C(7) - C(8) - C(9)	122.4	(3)	$N-C(1)-H^*$	(C(1))	108(2)
N-Ru-H(Ru)	82.6(9)	C(7) - C(6) - C(6)	115.5	i(2)	C(1) - C(2) - C(2)	H(C(2))	108(2)
N-Ru-N'	86.52(8)	C(8) - C(9) - C(9)	y 115.6	(2)	C(1) - C(2) - C(2)	$H^{*}(C(2))$	108(2)
ct-Ru-ct'	86.5		,	(-)	C(2) - C(3) - C(3)	H(C(3))	112(2)
		$C(8) \rightarrow C(7) \rightarrow H(C)$	(7)) 115(2	21	C(2) - C(3)	H*(C(3))	108(2)
C(1) = N = C(5)	108 9/2)	C(7)-C(7)-H(C	(8) 115(2)	.,))	C(3) = C(4) =	H(C(4))	119(2)
$N_{-C(1)} = C(2)$	119.4(4)		(0)) 105(2)	.) ()	C(3) = C(4) =	H(U(4))	112(3)
C(1) = C(2) = C(3)	111 2(3)		(J)) 103(4 C(9)) 107(9	E) 21	C(3) = C(4) = C(5) = -	H(C(5))	108(3)
C(2) = C(3) = C(3)	110 2(2)		(6)) 107(3)	·/	C(4) = C(5) =	H*(C(5))	108(2)
C(2) = C(3) = C(4)	119 4(2)	$C(7) = C(6) = H^{*}(0)$	C(6) 107(2) C(6) 105(3)	27	C(5) - N - H(1)	(C(0))	106(2)
C(4)C(5)N	114.0(2)		U(0)) 100(0	-,		~ /	100(2)
	*						
(b) intermolecula	154(0)						
N	104(2)						
						· ·	

. ^a Valeur moyenne des distances et écart-type, $((X_i - X)/N - 1)^{1/2}$, sur cette valeur.

Fig. 1. Molécule de [RuClH(C_8H_{12})($C_5H_{11}N$)₂].

Environnement du métal

La géométrie pseudo-octaédrique autour de l'atome de ruthénium (Fig. 2) est identique à celle observée dans les complexes dichloro précédemment étudiés [2,9] et en particulier dans l'isomère de type A, $[RuCl_2(nbd)(pip)_2]$. L'atome de chlore et le ligand hydruro sont situés de part et d'autre d'un plan équatorial défini par les atomes d'azote et les centres (ct, ct') des deux doubles liaisons de la dioléfine chélatante. Les atomes de Ru, Cl et H étant dans un site de symétrie $C_s(m)$ ceci impose un plan de symétrie pour la molécule. Les deux ligands pipéridine sont donc symétriques par rapport à ce plan et en position trans par rapport à une double liaison du cyclooctadiène. L'atome de ruthénium s'écarte légèrement (0.11 Å) du plan équatorial (N, N', ct, ct') dans la direction de l'atome de chlore, les quatres atomes de carbone oléfinique restant à la même distance du ruthénium (2.146(2) et 2.152(2) Å) ce déplacement s'accompagne alors d'un léger basculement du cyclooctadiène.

Fig. 2. Polyèdre de coordination du ruthénium dans $[RuClH(C_8H_{12})(C_5H_{11}N)_2]$.

7

L'examen des distances à l'intérieur de la molécule entre atomes non liés (Tableau 3) met en évidence des contacts intramoléculaires bien inférieurs à la somme des rayons de Van der Waals. En particulier les distances Cl…C(7) 3.16, H(Ru)…C(8) 2.23 Å du coté de l'oléfine et Cl…H(C(1)) 2.68, H(Ru)…N 2.56 et H(Ru)…C(5) 2.69 Å du coté des ligands aminés. L'encombrement stérique résultant a pour effet de déformer l'angle Cl—Ru—H(Ru) 161° et de repousser les atomes de Cl et d'H(Ru) vers les amines. Un phénomène similaire se retrouve dans les complexes oléfinique du ruthénium [2,9]. De la même façon l'orientation de deux molécules de pipéridine semble être le résultat d'une minimisation des divers contacts intermoléculaires si l'on en juge par les distances H(N)…H(N') 2.22 et $H^*(C(1))…H(C(7)) 2.25$ Å.

Une comparaison de la longueur de la liaison Ru-H 1.57 Å avec celles observées dans d'autres complexes du ruthénium(II) est difficile, en effet on relève peu de structures où la position de l'atome d'hydrogène lié au métal soit précisée; signalons le composé monomère $[RuH_2{P(OEt)_2Ph}_4]$ [10] avec Ru-H 1.60(8) Å et le composé dimère [Ru(Me₂PCH₂CH₂PMe₂)₂][11] avec deux distances Ru–H, l'une à 1.47(7) Å et l'autre à 1.83(7) Å. Les autres distances Ru–H mesurées [12-17] à partir de synthèses de Fourier-différence et non affinées se situent aux environs de 1.7 Å. Elles correspondent à l'ordre de grandeur des liaisons métal—hydrogène [18] déterminées par diffraction X. La liaison Ru(II)— $N(sp^3)$ égale à 2.240(2) Å est identique à celles rencontrées dans [RuCl₂(nbd)-(pip), [2], elle est à notre connaissance la plus longue jamais observée pour des complexes du ruthénium(II). Les deux ligands pipéridine en forme chaise, coordinés par l'atome d'azote sont symétriques par rapport au plan contenant Ru, Cl et H. Ils ne présentent aucune distorsion importante. La moyenne des valeurs des angles et des longueurs des liaisons (C-C-C 112(1)°; C-C 1.514(6); N-C 1.488(3) Å) sont comparables à celles rencontrées dans $[RuCl_{(nbd)(pip)_{2}}]$ [2] et dans d'autres complexes contenant le groupement pipéridine [19,20].

Influence structurale trans

Les études structurales de plus en plus nombreuses et de plus en plus précises sur les complexes organométalliques ont permis de mettre en évidence des variations anormales de la longueur de la liaison métal—coordinat (par rapport à la somme des rayons de covalence), variations qui dépendent de la nature du ligand situé en position trans. Ce phénomène a été principalement observé dans les complexes plan carré pour lesquels des théories ont été développées [21,22]. Mason et al. [23] indiquent que la théorie peut être étendue d'une manière qualitative aux complexes octaédriques où le métal à une structure électronique d^6 . L'accroissement de la longueur de la líaison Ru(II)—Cl (2.555(1) Å) est ici une parfaite illustration de l'influence structurale trans de l'hydrogène. Dans de nombreux composés, on observe pour la liaison métal-chlore un allongement dû à la position en trans d'un atome d'hydrogène. Ainsi dans [PdClH- $\{P(Et)_{3}\}_{2}$ [24], Pd-Cl 2.427(5) Å, dans $[PtClH\{P(Ph)_{2}Et\}_{2}]$ [25], Pt-Cl 2.422(9) Å tandis que la somme des rayons covalents est de l'ordre de 2.30 Å pour Pd—Cl et de 2.29 Å pour Pt—Cl. En tenant compte des structures que nous avons déjà résolues et de celles relevées dans la littérature, nous avons comparé (Tableau 4) les valeurs de la longueur de la liaison Ru(II)-Cl suivant le coordinat situé en position trans de l'atome de chlore. On constate que l'influence struc-

INFLUENCE STRUCTURALE trans SUR LA LONGUEUR DE LA LIAISON Ru(II)--Cl

Complexe	Ru(II)—Cl (Å)	Ligand en position <i>trans</i>	Réf.
$[RuCl(cod)(C_5H_{11}N)_2]$	2.555(1)	н	· · · · · · · · · · · · · · · · · · ·
$[RuCl_3 \{P(Et)_2 Ph\}_2]^-$	2.513(7)	PR3	26
[RuCl ₂ CO(CSe)(PPh ₃) ₂]	2.480(5)	CSe	27
$[RuCl_2(cod)(C_6H_{15}N)_2]$	2.458(1)	C=C	2
[RuCl ₂ [PH(CH ₃) ₂] ₄]	2.440(1)		28
[RuCl ₃ (p-N ₂ C ₆ H ₄ CH ₃)(PPh ₃) ₂]Me ₂ CO	2.386(3) ³	Cl	29 ^a
[RuCl2CO(CSe)(PPh3)2]	2.427(5)	со	27
[RuCl ₂ (dmso) ₄]	2.450(4) 2.414(5)	S(dmso)	32
[RuCl(NH ₃) ₄ (SO ₂)]	2.415(3)	S(SO ₂)	34
[RuCl ₃ (p-N ₂ C ₆ H ₄ CH ₃)(PPh ₃) ₂]Me ₂ CO	2.385(3)	NŇAr	29 ^a
[Ru(NO)Cl ₅] ²⁻	2.357(1)	NO	35 ^c
[RuCl(SO4)2NO(PPh3)2]	2.289(15)	O(SO4)	36

^a Autres références consultées: 9, 30, 31, 33.

turale trans diminue dans l'ordre: $H > PR_3 > CSe > C=C > Cl,CO,S(dmso,SO_2) >$ $NNAr > NO > SO_4$. Le nombre restreint de structures contenant, autour d'un atome de ruthénium, un atome de chlore en trans d'un carbonyle, ou d'un SO₂, ne nous permet pas de différencier nettement l'influence structurale trans de ces ligands de celle du chlore et du diméthylsulfoxyde. A l'inverse lorsque l'on possède un grand nombre de résultats pour un même coordinat (le chlore par exemple) nous avons indiqué seulement les distances maximum et minimum de façon à ne pas surcharger le Tableau 4, tout en signalant les diverses références consultées. En ce qui concerne la double liaison C=C, les résultats des structures de composés comportant des oléfines différentes (cod ou nbd) permettent de remarquer que l'influence structurale trans sur une liaison Ru(II)-N(pip) semble indifférente à la nature de l'oléfine; elle semblerait donc spécifique de la seule double liaison C=C. L'influence structurale trans de cette dernière a été récemment confirmée par l'étude de diffraction neutronique effectuée sur le sel de Zeise $KPtCl_3(C_2H_4)$, H₂O [37]; l'allongement de la liaison Pt-Cl situé en trans de l'éthylène est manifeste 2.340(2) Å contre 2.302(2) Å pour Pt-Cl situé en cis de l'éthylène.

D'autres données structurales seront nécessaires pour confirmer, infirmer ou compléter cette série, mais déjà ces observations sont en accord avec celles effectuées sur des complexes du platine [21,38], du palladium [39] et du rhodium [40] pour lesquels divers auteurs proposent une influence structurale *trans* similaire sur la longueur de la liaison métal—chlore.

Le coordinat cyclooctadiène

La coordination du cyclooctadiène (complexé dans la forme bateau) au ruthénium est conforme à la théorie de Dewar [41], Chatt et Duncanson [42]. La double liaison C(7)—C(8) subit un allongement identique à celui observé précédemment dans [RuCl₂(cod)(hexylamine)₂] [2]. La distance Ru—ct (ct étant le point milieu de la double liaison) est tout à fait comparable à celles relevées

EQUATIONS DES PLANS MOYENS, ECARTS DES ATOMES A CES PLANS, ANGLES DIEDRES ENTRE LES PLANS

Atomes définissant le plan	Plan	A ^a	В	С	D
Ru, ct, ct'	I	0.000	0.796	-0.604	-0.125
C(6), C(7), C(8), C(9)	II	0.856	0.313	0.409	-5.391
Ru, C(7), C(8)	III	0.729	-0.419	-0.540	3.285
C(9), C(8), C(7)	\mathbf{IV}	0.857	-0.313	-0.407	5.395
C(8), C(7), C(6)	v	0.855	-0.316	-0.410	-5.386
C(6)', C(7)', C(8)', C(9)'	VI	-0.856	0.313	-0.409	1.807
C(8), C(7), C(7)'	VII	0.000	0.611	0.791	-1.163
C(7), C(7)', C(8)'	VIII	0.000	-0.611	-0.791	-1.163
C(6), C(6)', C(9)'	IX	0.000	0.603	-0.797	-2.249
C(6)', C(9)', C(9)	x	0.000	0.603	0.797	-2.249
ct. ct', N. N'	XI	0.000	0.841	-0.540	-0.034

Angles dièdres (degrés) entre les plans, tous les angles sont pris inférieurs à 90° (I, II) = 89.9°; (III, II) = 74.2°; (IV, V) = 0.3° ; (II, VI) = 62.1° ; (VII, VIII) = 90° ; (IX, X) = 0.0°

Distances des atomes au plan moyen:

Plan II: C(6) = 0.000; C(7) = 0.001; C(8) = -0.001; C(9) = 0.000Plan VI: C(6)' = 0.000; C(7)' = 0.001; C(8)' = -0.001; C(9)' = 0.000

Plan VI: C(0) = 0.000; C(7) = 0.001; C(8) = -0.001; C(9) = -0.00

Plan XI: ct, ct', N, N' = 0.000; Ru = 0.11

^a Equation des plans: Ax + By + Cz + D = 0 dans le système d'axes orthonormés a, $c^* \Lambda a$, c^* .

dans les autres complexes du ruthénium précédemment étudiés. Les longueurs des liaisons C(6)-C(6)' et C(9)-C(9)' semblent anormalement faibles, la forte agitation thermique des atomes de carbone concernés pourrait en être la cause. Les résultats obtenus sur le cyclooctadiène gazeux libre par diffraction électronique [43] ont montré que cette dioléfine avait une symétrie C2 et que de plus elle était très distordue. Dans le cas de [RuClH(cod)(pip),] le cyclooctadiène complexé présente une distortion atténuée par la symétrie imposée $C_{\rm s}$, l'oléfine est symétrique par rapport à un plan contenant Ru, Cl, H et le centre des liaison C(6)—C(6) et C(9)—C(9)', c'est à notre connaissance le seul exemple de ce type, Dans la majorité des complexes contenant le cyclooctadiène coordiné à un métal celui-ci ne possède aucune symétrie, plus rarement on relève la symétrie C2 [2] ou $C_s * [44,45]$. L'angle de chélation ct-Ru-ct' (86.5°) toujours du même ordre de grandeur dépend de la nature de l'oléfine et non du métal central. Un calcul d'angle dièdre (Tableau 5) entre le plan contenant Ru, C(7), C(8) (plan de la liaison métal—oléfine) et le plan de la double liaison (plan contenant C(7), C(8), C(6) et C(9)) donne une valeur de 74.2° qui semble également caractéristique du cyclooctadiène complexé. On peut aussi signaler le léger écart (0.28 Å) entre les distances d'atomes non liés $C(7) \cdots C(8)'$ (3.11 Å) et $C(6) \cdots C(9)'$ (3.39 Å) valeurs que l'on peut comparer avec les distances plus longues observées pour ce même ligand complexé mais possédant une symétrie différente (C2 ou C1). Les divers angles diédres entre les plans movens constituées

^{*} Dans ce dernier cas, le plan de symétrie contient l'atome central et les centres des deux doubles liaisons.

par des atomes de carbone du cyclooctadiène (Tableau 5) montrent bien l'influence de la symétrie imposée sur la distortion de la dioléfine.

Spectrométrie infrarouge

La caractéristique essentielle des spectres infrarouges des comples hydruro est la bande $\nu(\text{Ru}-\text{H})$ à 2040 cm⁻¹ (avec la diméthylamine, la cyclohexylamine et la pipéridine) et à 2060 cm⁻¹ (pyridine). Sur le spectre de [RuClH(nbd)(pip)₂] cette bande à 2040 cm⁻¹ présente un épaulement à 2050 cm⁻¹ qui peut être interprété par la présence de deux isomères qui n'ont pu être séparés.

Par ailleurs l'existence de liaisons hydrogène dans les cristaux de [RuClH(cod)-(pip)₂] est confirmée par l'abaissement de la fréquence ν (N—H) à 3205 cm⁻¹, cette vibration étant observée à 3235 cm⁻¹ dans le complexe [RuCl₂(nbd)-(pip)₂] [2] où la structure cristalline ne montre aucune interaction H(N)…Cl.

Spectrométrie RMN protonique

La transformation ou l'insolubilité, dans les solvants usuels de la RMN, a rendu difficile l'étude de ces complexes. Les spectres RMN de tous ces composés peuvent être enregistrés dans la pyridine- d_5 ; ils présentent un pic vers -5 ppm qui peut être attribué à l'atome d'hydrogène lié au métal, mais la réaction d'échange de coordinat observé avec cette amine et la formation d'un autre complexe hypothèque toute interprétation.

Conclusion

La détermination de la structure cristalline de [RuClH(cod)(pip)₂] a permis de préciser sans ambiguité l'arrangement des coordinats autour de l'atome central de ruthénium. La présence d'un ligand hydruro (mise en évidence par infrarouge) a été confirmée ainsi que sa grande influence structurale trans sur la distance Ru(II)-Cl. Remarquons également la grande symétrie observée pour la dioléfine chélatante. Les autres complexes hydruro [RuClH(cod)(amine),] semblent posséder la même configuration en effet $[RuClH(cod) {(CH_3)_2NH}_2]$ cristallise aussi dans le système orthorhombique avec comme groupe d'espace Pmcn ou P21cn (paramètres a 13.835(3); b 11.438(3); c 9.340(2) Å). Comme on peut en juger par la comparaison des valeurs des paramètres de la maille, seul le paramètre a est tres affecté, en effet l'agencement des molécules dans la maille permet d'imaginer une influence nette sur ce seul paramètre, l'encombrement maximum de l'amine se produisant dans la direction de a. Le composé obtenu par réaction de coordinat amine dans la pyridine à partir de [RuClH(cod)-(amine),] est particulièrement intéressant puisqu'il est le seul à ne pas se décomposer en solution. Son étude structurale à l'état solide par rayons X et à l'état dissout par RMN fera l'objet d'un prochain mémoire.

Remerciement

Nous tenons à remercier B. Bachet pour l'enregistrement et le traitement des données cristallographiques sur bandes magnétiques.

Bibliographie

- 1 C. Potvin et G. Panne'ier, Bull. Soc. Chim. Fr., (1974) 783.
- C. Potvin, J.M. Manoli, G. Pannetier, R. Chevalier et N. Platzer, J. Organometal. Chem., 113 (1976) 273.
- 3 P.S. Hallman, B.R. McGravey et G. Wilkinson, J. Chem. Soc., (1968) 3143.
- 4 J.J. Hough et E. Singleton, J. Chem. Soc. Chem. Commun., (1972) 371.
- 5 T.V. Ashworth, E. Singleton et M. Laing, J. Organometal. Chem., 117 (1976) C113.
- 6 E.W. Abel, M.A. Bennett et G. Wilkinson, J. Chem. Soc., (1959) 3178.
- 7 F.A. Cotton et G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed., Wiley, New-York, 1972, p. 120.
- 8 W.C. Hamilton et J.A. Ibers, Hydrogen Bonding in Solids, W.A. Benjamin, New-York, 1968.
- 9 J.M. Manoli, A.P. Gaughan et J.A. Ibers, J. Organometal. Chem., 72 (1974) 247.
- 10 L.J. Guggenberger, Inorg. Chem., 12 (1973) 1317.
- 11 F.A. Cotton, D.L. Hunter et B.A. Frenz, Inorg. Chim. Acta, 15 (1975) 155.
- 12 A.C. Skapski et P.G.H. Troughton, J. Chem. Soc. Chem. Commun., (1968) 1230.
- 13 U.A. Gregory, S.D. Ibekwe, B.T. Kilbourne et D.R. Russel, J. Chem. Soc. A, (1971) 1118.
- 14 A.C. Skapski et F.A. Stephens, J. Chem. Soc. Dalton, (1974) 390.
- A.C. Skapski et F.A. Stephens, J. Chem. Soc. Chem. Commun., (1969) 1008.
- 15 J.C. McConway, A.C. Skapski, L. Phillips, R.J. Young et G. Wilkinson, J. Chem. Soc., Chem. Commun., (1974) 327.
- 16 L.D. Brown et J.A. Ibers, J. Amer. Chem. Soc., 98 (1976) 1597; L.D. Brown et J.A. Ibers, Inorg. Chem., 15 (1976) 2788.
- 17 S. Komiya, T. Ito, M. Cowie, A. Yamamoto et J.A. Ibers, J. Amer. Chem. Soc., 98 (1976) 3874.
- 18 B.A. Frenz et J.A. Ibers, In E.L. Muetterties (Réd.) Transition Metal Hydrides, M. Dekker, New-York, 1971, p. 42.
- 19 L.J. Radonovich, A. Bloom et J.L. Hoard, J. Amer. Chem. Soc., 94 (1972) 2073.
- 20 W.R. Scheidt, J. Amer. Chem. Soc., 96 (1974) 84.
- 21 R. McWeeny, R. Mason et A.D.C. Towl, Disc. Farad. Soc., 47 (1969) 20.
- 22 T.G. Appleton, H.C. Clark et L.E. Manzer, Coord. Chem. Rev., 10 (1973) 335.
- 23 R. Mason et A.D.C. Towl, J. Chem. Soc. Dalton Trans., (1970) 1601.
- 24 M.L. Schneider et H.M.N. Schearer, J. Chem. Soc. Dalton, (1972) 354.
- 25 R. Eisenberg et J.A. Ibers, Inorg. Chem., 4 (1965) 773.
- 26 K.A. Raspin, J. Chem. Soc. A, (1959) 461.
- 27 G.R. Clark, K.R. Grundy, R.O. Harris, S.M. James et W.R. Roper, J. Organometal. Chem., 90 (1975) C37.
- 28 F.A. Cotton, B.A. Frenz et D.L. Hunter, Inorg. Chim. Acta, 16 (1976) 203.
- 29 J.V. McArdle, A.J. Schultz, B.J. Cordon et R. Eisenberg, Inorg. Chem., 12 (1973) 1676.
- 30 B.L. Havmore et J.A. Ibers, Inorg. Chem., 14 (1975) 3060.
- 31 A.J. Schultz, R.L. Henry, J. Reed et R. Eisenberg, Inorg. Chem., 13 (1974) 732.
- 32 R.S. McMillan, A. Mercer, B.R. James et J. Trotter, J. Chem. Soc. Dalton, (1975) 1006.
- 33 A. Mercer et J. Trotter, J. Chem. Soc. Dalton, (1975) 2480.
- 34 L.H. Vogt, J.L. Katz et S.E. Wiberley, Inorg. Chem., 4 (1965) 1157.
- 35 J.T. Veal et D.J. Hodgson, Inorg. Chem., 11 (1972) 1420.
- 36 J. Reed, S.L. Soled et R. Eisenberg, Inorg. Chem., 13 (1974) 3001.
- 37 R.A. Love, T.F. Koetzle, G.J.B. Williams, L.C. Andrews et B. Bau, Inorg. Chem., 14 (1975) 2653.
- 38 L.J. Manojlovic-Muir et K.W. Muir, Inorg. Chim. Acta, 10 (1974) 47.
- 39 M. Alleaume, A. Gulko, F.H. Herbstein, M. Kapon et R.E. Marsh, Acta Crystallogr., B, 32 (1976) 669.
- 40 B. Cetinkaya, M.F. Lappert, G.M. McLaughlin et K. Turner, J. Chem. Soc. Dalton Trans., (1974)
- 41 M.J.S. Dewar, Bull. Soc. Chim. Fr., (1951) 18.

1591.

- 42 J. Chatt et L.A. Duncanson, J. Chem. Soc., (1953) 2939.
- 43 L. Hedberg et K. Hedberg, Abs. Pap. Amer. Crystallogr. Ass., Summer Meeting, Bozeman, 1974.
- 44 M.R. Churchill et S.A. Bezman, Inorg. Chem., 12 (1973) 260.
- 45 V. Day, K.J. Reimer et A. Shaver, Chem. Commun., (1975) 403.